Consistent Sets of Lines with no Colorful Incidence

Abstract

We consider incidences among colored sets of lines in $\mathbb R^d$ and examine whether the existence of certain concurrences between lines of $k$ colors force the existence of at least one concurrence between lines of $k+1$colors. This question is relevant for problems in 3D reconstruction in computer vision.

Publication
34th International Symposium on Computational Geometry (SoCG)
Date
Links
PDF